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Viscous fluid buckling of plane and axisymmetric jets 
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(Received 11 August 1980 and in revised form 16 March 1981) 

Experimental results are presented concerning the spontaneous oscillations observed 
when a high-viscosity fluid jet fiows vertically against a flat surface. The two jet 
shapes investigated were the axisymmetric jet and the plane jet. The minimum dis- 
tance from the jet orifice to the flat surface for which these oscillations are observed, 
termed the ‘buckling height ’, was determined experimentally. The frequency of the 
subsequent oscillations was also determined. Both were measured as functions of 
fluid and flow variables. It is found that surface tension effects are the dominant 
factors influencing the buckling height, while the rate of oscillation is affected by both 
surface tension effects and by viscous, gravity and inertia effects. The major results 
are presented in non-dimensional form. Photographs of the buckling phenomenon are 
provided for representative jet geometries. It is also established experimentally that 
there is an upper limit to the flow Reynolds number above which buckling does not 
occur. 

1. Introduction 
In  numerous areas of solid mechanics, the concept of buckling is an important and 

fairly well-understood phenomenon. The understanding of the buckling of columns, 
beams, plates and other structures is critical in many design situations. The pheno- 
menon of buckling, i.e. the transition from the straight to the bent configuration a t  
the buckling load, occurs because the straight configuration ceases to be stable. The 
buckling of structures has been extensively investigated, both theoretically and experi- 
mentally. For example, the well-known Euler equations govern the critical load for 
elastic buckling in slender columns with given end conditions. 

Within the realm of fluid mechanics, a similar phenomenon is observed - a phe- 
nomenon typified by the familiar coiling of a thin stream of honey as it falls onto a 
flat plate. Careful observations indicate that a high-viscosity fluid such as honey may 
depart spontaneously from a stable axially symmetric stagnation jet flow and, under 
the appropriate physical conditions, maintain a state in which oscillations in the form 
of coiling or folding are observed in that region of the jet close to the stagnation surface. 
Typical situations illustrating this are shown in figures 1-5. This spontaneous transi- 
tion from a condition of steady, stable flow to unsteady oscillations of parts of the jet 
column we refer to as ‘fluid buckling ’, in analogy with its much studied counterpart 
in solid mechanics. 

As indicated in figure 1, if the distance H between the orifice and the flat plate 
against which the viscous jet flows is less than the critical value Hc, the jet will be 
stable. For H > H,, the jet is unstable and will buckle. Such fluid buckling has received 
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( a )  ( h )  (C) ( d )  
FIGURE 1 .  Norneiiclt~tiirc for fluid brickling of a viscous jet. ( a )  Stable, iinbuckled jet; ( b )  buckling 
begins at crii icnl lieight ; (c) biirklcd axisynlmet ric jet (coiling) ; ( d )  burlrled plane jet (folding). 

very little attention since it was first investigated qualitatively by Taylor (1968). 
Lienhard ( 1 968) has presented experimental results concerning a somewhat related 
instability of small, low-viscosity (water) jets impinging on a surface. Suleiman & 
Munson (1981) have studied a related phenomenon, the buckling of thin layers of very 
viscous liquids subjected to shear flow; this type of fluid buckling corresponds to the 
buckling of solid plates under the application of a shear force loading. 

Physically, the reason for the buckling of a viscous jet can be attributed to the 
fact that a viscous jet may be either in tension or compression, depending on the 
velocity gradient along its axis (Cruickshank 1980). If the dimaeter of the jet increases 
in the downstream direction, the viscous normal stress along its axis is one of com- 
pression. T f  this viscous compressive component of the normal stress is large enough, 
the net axial stress in the jet (including the tensile effect of the surface tension contri- 
bution) may be compressive. Thus, near the flat plate, sufficiently large axial com- 
pressive stresses along with a sufficiently ‘slender’ jet combine, under appropriate 
circumstances, to produce the fluid mechanics analogue to the buckling of a slender 
solid column. 

The purpose of the present paper is to present extensive experimental results t o  
quantify the instability that results in the buckling of a viscous jet that  flows against 
a flat plate. The important dimensionless parameters are identified and their values 
for the critical buckling and post-buckled flows are determined. 

2. Dimensional analysis of the fluid buckling process 
As indicated in the previous section, n very viscous jet impinging upon a flat surface 

may become unstable and buckle if its length becomes too large. As seen in figures 2-5 
this buckling may occur for jets of various cross-sectional shapes. For the majority 
of our experimental investigation, we used two basic shapes - the round axisymmetric 
jet (circular orifice) and the plane jet (slot orifice). The important dimensionless para- 
meters associated with the buckling process for these jets can be obtained as indicated 
below. 
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( h )  
FIGURE 2 .  Rucklcd axisymrnetric jet. ( a )  Coiling: H = 1.98 cm, Q = 9.74 x cm3/s, d = 0.114 
cm, (0 = 85Hz, 1’ = 5600 cSt; ( h )  folding: H = 9.1 cm, Q = 20.7 cm?/s, d = 1.27 cin, 
w = 9.67 Hz, v = 5500 cSt. 

It is postulated that the frequency of oscillation of the buckled axisymmetric jet 

(1) 

o depends on the following variables : 

Q = ( 4 H ,  g, d ,  Q ,  r, P ,  P I ,  
where H is the distance from the orifice to the flat surface, g is the acceleration due to 
gravity, d is the diameter of jet orifice, Q is the volume flow rate of fluid, and cr, p, and 
p are the fluid surface tension, density, and viscosity, respectively. 
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( b )  
FIGURE 3. Buckling of a plane jet. (a )  Stable, 

unbuckled jet ; ( b )  unstable, buckled jet. 

Thus, according to the Buckingham Pi theorem of dimensional analysis, ( 1 )  can be 
rewritten in terms of five non-dimensional groups: 

where v = ,u/p and y = pg are the kinematic viscosity and the specific weight, respec- 
tively. 

According to this non-dimensional representation, the dimensionless frequency of 
oscillation o(d /g ) j  is a function of four parameters: ( 1 )  the ratio of surface tension 
forces to gravitational forces a/yd2, (2)  the ratio of viscous forces to  gravitational 
forces pQlyd4, (3) the ratio of inertia forces times gravity forces to  viscous forces 
gd3/v2, and (4) the slenderness ratio H l d .  

For H < Hc the jet is stable, w does not exist (no oscillations) so that the critical 
length-to-diameter ratio may be written as 
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( b )  

FIGURE 4. Buckling of an X-shaped jet. ( a )  Stable, unbuckled; ( b )  unstable, buckled. 
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FIGURE 5 .  Buckling of a jet of 10000 cSt oil float,ing on water. 

We further assume that the buckling process itself is a low-Reynolds-number 
phenomenon, implying that inertia effects are negligible; thus, the only term involving 
density (gd3/v2  = p2gd3/,u2) may be neglected. Hence, (3) may be rewritten as 

As discussed in 3 4, the experimental results indicate that inertia effects are indeed 
insignificant as far as the buckling height is concerned. 

Similar analysis for a plane jet from a slit with width d, and length D results in the 
following dimensionless representation : 

where Q' is the volume flow rate per unit slit length. We have assumed that the flow 
is one-dimensional so that w(d,/g) j  does not depend on the geometrical parameter 
D / d l .  This assumption is verified experimentally as discussed in 9 4. Again assuming 
no important inertia effects as far as the buckling height is concerned, we obtain 

Experiments were conducted to establish the functional relat,ionships indicated in (a), 
(41, ( 5 )  and (6). 
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FIGURE 6. Schematic diagram of fluid-buckling apparatus. 

3. Description of the experiment 
The basic apparatus for the experiments, shownin figure 6, contains an orifice through 

which a high-viscosity fluid is pumped. The resulting fluid jet impinges on a flat plate 
a known distance H below the orifice, as in figure 1.  

The apparatus consists of a clear plastic container with outlets in the base through 
which the working fluid can be drawn by the pump for circulating through the steel 
pipe into the pressure chamber. The fluid is then forced through the orifice at the end 
of the vertical steel pipe and onto the plate. It is then allowed to flow over the sides 
of the plate, where i t  collects a t  the bottom of the container, and then the cycle 
continues. 

The pump is gear-type and is driven by a variable-speed electric motor. For very 
low flow rates through the orifice, some of the fluid can be bypassed directly back into 
the container without passing through the orifice. 

A thermometer is incorporated for monitoring the fluid temperature so that its 
viscosity can be determined. A stroboscope was used for measuring the rate of coiling 
or folding w of the buckled flow. The working fluid was mainly Dow Corning 200 silicone 
oil which was chosen because of its fairly flat viscosity-temperature curve, its avail- 
ability over a wide range of very high viscosities and its clarity. Other high-viscosity 
fluids such as sorghum and corn syrup (which have surface tensions different from 
that of silicone oil) were used a t  times, although most of the results were obtained 
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with silicone oil. As shown, in part, by the linear shear stress versus rate of strain 
results presented by Suleiman & Munson (1981), these are Newtonian fluids. 

The fluids used had viscosities ranging from 1000 centistokes (cSt) to 30000 cSt. It 
is to be noted that these values are three to four orders of magnitude larger than that 
for water, which has a kinematic viscosity of approximately 1 cSt. The surface tension 
of the silicone oil was approximately 22dyn/cm, while those of the water-based 
sorghum and corn syrup were about 55 and 68 dyn/cm, respectively. The viscosity 
was measured using a calibrated capillary tube viscometer, while the surface tension 
was measured using a ring surface tensiometer. The seven orifice diameters used in 
the axisymmetric experiments ranged from 0.1 14 to 1.91 em. For the plane jet, nine 
slits were used with D/d, = 5, 10, and 15 and D from 0.990 to 4.14 em. 

The orifice to plate distance at  which buckling first begins H,, and the resulting 
value of w (see figure 1)  a t  and beyond this point, were measured for the various orifice 
sizes and geometries, at  different fluid flow rates Q ,  and at  varying values of H .  

The value of w was measured with a stroboscope; the fluid flow rate Q was measured 
by collecting an amount of fluid over a period of time and weighing the result; and 
the plate to orifice distance H was read off an appropriate measuring gauge. 

While the phenomenon of coiling or folding can be adequately produced by having 
the fluid jet impact on a surface of similar, stagnant fluid, this was avoided in favour 
of having it impact on a solid surface so as to reduce the possibility of bubble formation 
in the viscous fluid with the attendant fluid property deterioration. All efforts were 
made to run the experiment without bubbles in the fluid; however, for the high- 
viscosity fluids used, it was difficult to avoid the formation of bubbles at  all times. 
Such occasions, however, were kept to a minimum. 

4. Experimental results 
As shown in figures 1-4, the stable flow ceases to exist when the plate-orifice dis- 

tance reaches some critical value. The fluid column starts to oscillate, presumably as 
a result of the disturbance of the jet column inherent in moving the plate or from other 
natural disturbances. If the jet length is less than the critical length, the oscillations 
soon die out and the column remains stable. 

If, however, the plate-orifice distance is fairly close to the critical value, the oscilla- 
tions take longer and longer to die out. As the plate gets nearer and nearer to the 
buckling point, the oscillations become self-sustaining, and the column, or the lower 
parts of it, continue to oscillate at  some fixed frequency w so long as other parameters 
such as flow rate and plate-orifice distance remain fixed. The nature of some typical 
coils formed after buckling of the axisymmetrical jet can be seen in figure 2. Figure 
2(a) shows a particularly smooth form of the coiling that is obtained under some 
circumstances, and figure 2 ( b )  is an example of the two-dimensional folding obtained 
with an axisymmetric jet just before all oscillations disappear as the flow rate gets 
very high. The plane jet, which behaves similarly, does not coil but instead folds 
sinusoidally, also at  a specific frequency (figure 3). 

It is of interest to note that the buckling can occur independently of gravity. Figure 
5 shows fluid buckling in the case of a horizontal jet of silicone oil issuing from an 
orifice onto the horizontal surface of a container of water. For vertical jets (all cases 
discussed in this paper except the example shown in figure 5) gravity is an important 
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force producing the basic stable, unbuckled jet. However, as shown by figure 5,  for 
which gravity acts normal to the axis of the jet, gravity is not an essential ingredient 
for producing the buckling instability. The flow is not driven by gravity, but the jet 
can still buckle and oscillate in the horizontal plane. 

Like its counterpart in solid mechanics, fluid buckling can occur for all types of 
interesting geometries. Figure 4 shows buckling for the case of a high-viscosity fluid 
flowing through an X-shaped slit. 

Although most of the results presented are in dimensionless form, some results are 
presented in dimensional form in figures 7 and 8 for typical axisymmetric jets. 

As indicated above, the basic flow is a pure stagnation jet flow if the plate is fairly 
close to the orifice, This type of flow is maintained until the critical distance is reached. 
It is at  this critical distance H, that the first spontaneous oscillations are observed. 
They start from the axisymmetric jet as purely sinusoidal two-dimensional waves, 
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FIGURE 8. Buckling height H, as a function of flow rate Q for typical axisymmetric jets. 
Y = 10000 cSt. 0, plate moving away from orifice; A, plate moving toward orifice. 

folding rather than coiling, but quickly turn into helical coils of fixed frequency. 
The oscillations may also start in the form of coiling. The direction of rotation of the 
coils may be either clockwise or anti-clockwise with no preferred direction discernible. 
The plane jet is always observed in the folding mode when it  becomes unstable. 

The frequency of the coiling generally tends to increase with plate distance H ,  
although there is a short distance over which in some instances (small jet diameter, 
high flow rate) the frequency decreases with H before increasing again (figure 7 ) .  
I n  this region, the rate and type of spin for the axisymmetric jet seems rather random 
with a mixture of two-dimensional sinusoidal waves and helical coils of apparently 
different frequencies existing simultaneously. 

The buckling height for axisymmetric jets generally shows a slight increase with 
flow rate and a fairly significant one with increases in orifice diameter (figure 8). A 
hysteresis effect is observed, with the buckling height being different for the two cases 
of plate moving away from the orifice (buckling begins) or moving towards it (buckling 
stops). I n  the latter case, the spinning continues for a short distance past the original 
point of buckling, resulting in consistently lower values of H,. Except for the data of 
figure 8, all the data presented in this paper are based on measurements obtained 
with the plate moving away from the orifice (from a stable to  an unstable configuration). 

This general behaviour is maintained with increasing fluid flow rate until a t  values 
of the Reynolds number (based on orifice diameter and fluid velocity a t  orifice, 
Re = 4Q/nvd)  that  are of the order of 0.1-1.0. I n  this range the helical oscillations for 
the axisymmetric jet begin to disappear and are replaced by two-dimensional sinu- 
soidal folding of the jet column (figure 2 b ) .  The plane jet is always observed in the 
folding mode. Further increases in the flow rate corresponding to Reynolds numbers 
Re of around 1.2 for the axisymmetric jet cause the oscillations to disappear altogether. 
This is a critical Reynolds number beyond which the jet returns to stagnation flow 
a t  all plate distances from the jet exit. For the plane jet, the critical Reynolds number 
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FIGURE 9. Range of parameters for which jet will buckle. Solid symbols represent upper limit 
of Reynolds number beyond which jet will not buckle. Symbols show different values of u/yda. 
0, 1 . 7 7 ;  0,  0.59; A, 0.23; Q, 5 . 6 4 ~  0, 2 . 5 4 ~  10T2; V, 1 . 4 3 ~  10-2; 0 ,  6 . 3 3 ~  10-3. 

based on d, (slit width) averages about 0.56. Apparently, this Reynolds-number 
limitation is the reason that jets of low viscosity, such as water, are not observed to 
buckle. 

Owing to limitations on the size of our equipment, the maximum plate distance to 
orifice diameter ratio H l d  used was around 150. Presumably, as this ratio gets larger 
and larger, surface tension would begin to  play a significant role resulting in the well- 
studied problem of jet breakup into drops (McCarthy & Molloy 1974). However, with 
the flow rates, viscosity, and distances used in this experiment,, jet breakup was not, 
observed. 

The coiling or folding frequency may become very large in some instances. For 
example, frequencies as high as 167Hz  were observed for the axisymmetric jet, 
with a 5500 cSt silicone oil and an orifice diameter of 0.114 cm (0.045 in) a t  a distance 
equivalent to 133 orifice diameters from the exit (figure 7) .  Frequencies of similar 
magnitude were observed for the smallest plane jets. 

The height and character of the coiled fluid varies considerably with jet character- 
istics and plate distance. It ought to be pointed out that, while this study required a 
flat plate to facilitate the measurement of distance, the coiling or folding effect can 
be produced by any object that is intruded into the mainstream of the jet if its distance 
from the orifice is greater than the critical distance needed for buckling. 

Some of the dimensionless results of the jet buckling study are shown in figures 9- 
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13 and discussed below. The purpose of these graphs is t o  illustrate the functional 
relationship among the various dimensionless quantities identified in $ 2 .  

Figure 9 is constructed specifically to indicate the range of Reynolds numbers over 
~ v h i ~ ~ l i  experiments could be carried out in order to emphasize the Reynolds-number 
effect at higher flow rates. The Reynolds number is based on the orifice fluid velocity 
and the orifice diameter. Thus, this parameter is different from the one involving 
inertia used in $ 2  (gd3/v2)  which was designed so as to reflect more local velocity 
effects by using fluid acceleration due to gravity. 

Thew is, of course, a lower limit on the flow rate (Reynolds number Re equal t o  
4QI77vd) for the experiment. This has to do with the need for some minimum flow rate 
t o  ensure that a jet is produced (Zaik 1879). If the flow rate is too small, the fluid 
either drips from the orifice (for small diameter jets) or peels away from the wall 
and does not fill the orifice (for large diameter jets). Such conditions tend to occur 
along the left side and bottom of the ‘thumbprint’ region of the (p&/7d4, 4Qlnvd) 
plane shown in figure 9. 

There is also an upper limit on the flow rate (Reynolds number) for the experiment, 
Figure 9 emphasizes the fact that the point beyond which the jet does not buckle, 
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f \  

regardless of the value of H l d ,  coincides roughly with the point a t  which the Reynolds 
number is about 1.0. For the axisymmetric jet the average value of this critical 
Reynolds number was actually 1.2. All the other points represent data points in the 
(,uQ/yd4, 4Q/nvd) plane for which the critical height H, was determined. This figure 
establishes the approximate upper and lower Reynolds number boundaries within 
which the experiment could be performed. 

As indicated functionally in (4), the dimensionless buckling height, HJd,  is expected 
to be dependent on the dimensionless surface tension parameter a/yd2, and the 
dimensionless viscosity parameter pQ/yd4. Physically, these two parameters are the 
ratio of surface tension to gravitational forces and the ratio of viscous to gravitational 
forces, respectively. The experimental data indicated that because of the high vis- 
cosities and low speeds involved, inertia effects were insignificant. The exception to 
this was the existence of a critical Reynolds number (mentioned in the previous para- 
graph) above which the jet would not buckle for any H/d .  For flows with the same 
value of ,uQ/yd4 but with Reynolds numbers less than this critical value, the value 
of HJd was found to be independent of the Reynolds numbers. 

The following general characteristics can be inferred from the results presented in 
figures 10 and 1 1 .  Figure 10 shows typical results for two extreme values of the surface 
tension parameter, and figure 11 is a composite of several curves. The experimental 
data points were excluded from figure 11 for better clarity. The surface tension para- 
meter a /yd2  was varied by using different diameter orifices d,  and, in some instances, 
by using different fluids (silicone oil, corn syrup, or sorghum). For a constant value 
of alyd2,  the parameter ,uQ/yd4 was varied by varying the flow rate Q. 

Over a range of 0.01-10000 for the pQ/yd4 parameter and a range of 0.0063-1.77 
for the alyd2 parameter, HC/d  varies between 2 and 30. Thus, HJd varies over only 
one order of magnitude while ,u&lyd4 varies over six orders of magnitude and u /yd2  
varies over three orders of magnitude. Although the dependence of H,/d on a /yd2  
andpQlyd4 is quite strong over portions of the parameter space, it is, in general, rather 
weak over most of the range of parameters tested. 

It is obvious that surface tension can make a significant change in the non-dimen- 
sional buckling height, especially a t  very low flow rates. This is particularly so if 
the orifice diameter is quite small and Can be seen by the upturn at, the left end of the 



234 J .  0. Cruickshank and B. R. Munson 

0.1 I I I I I 1 1 1 1  I I I I I I I L  
I 10 

Illd 

I00 

FIGURE 12. Rate of spin of a buckled axisymmetric jet as a function of flow variables. Each 
curve is labelled with the value of pQ/yd4. Other parameters are (a)  u / y d 2  = 6.33 x and 
gd3/v2 = 7.59 x and gd3/v2 = 0.66; (c) u / y d 2  = 2.54 x and 
gd3/va = 8.48~ and gd3/v2 = 2 . 8 5 ~  ( e )  u / y d 2  = 0.59 and 
g d 3 / ~ 2  = 2.5 x 

( b )  u / y d 2  = 1.43 x 
( d )  u / y d 2  = 5 . 6 4 ~  

(f) u /yd2  = 0.59 and gd3/lv2 = 8.45 x 
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large a/yd2 curve of figure 1 I .  On the contrary, a t  larger diameters (lower values of 
alp?) the effect of surface tension is almost negligible to the point where there is 
hardly any difference in HJd for various values of cr/y@. 

As indicated by (2), the non-dimensional coiling or spin rate of a buckled axisym- 
metric jet is expected to be a function of the surface tension, viscosity, and inertia 
parameters and the length to diameter ratio H / d  of the jet. Typical results for a fairly 
wide range of parameters are shown in figure 12. Additional parameter values are 
covered in the work by Cruickshank (1980). 

The data for the curves of figure 12 were obtained as follows. The surface tension 
parameter cr/yd2 was fixed for a given fluid and orifice diameter. Curves of w(d/g) i  
as a function of 'H/d  for given ,uQ/yd4 were obtained by adjusting the flow rate to give 
the desired value of ,uQ/yd4. The orifice-plate distance H was varied and the frequency 
of the coiling w was measured with a strobe light. Various combinations of flow rate, 
orifice diameter and fluid properties were used. Each combination produced one curve 
in figure 12. 

As discussed earlier, the fluid first buckles a t  some critical plate-to-orifice distance 
and, as a consequence of this instability, the fluid stream, or parts of it, begin to 
oscillate. Generally, the oscillations are helical from the start, but some jets (in most 
cases for the large-diameter jets) have been observed to swing back and forth more 
like a pendulum. In  any case, the only mode observed as the plate is moved further 
away from the buckling point is the helical mode. There is, however, a tendency 
under some circumstances for the return of the oscillations to a mix of helical and 
folding patterns at  some plate location a few diameters downstream of the buckling 
point. This rather random pattern does not occur all the time or with all flow condi- 
tions but is generally observed for small-diameter, low flow rates, and high surface 
tension and viscosities. When it occurs, it tends to coincide with the turning points 
on the graphs of figure 12. In  figure 7, for example, it was observed in the region 
marked by the dashed lines. It was not a very frequent occurrence and, furthermore, 
it was difficult to measure the frequencies because of the randomness of the oscillations. 

As the plate is moved further downstream of the orifice, the oscillations return in 
all cases, for the axisymmetric jet, to the helical mode. There appears to be a general 
pattern to the behaviour of these oscillations, and the dimensional plot of figure 7 
clearly shows that, aside from the pecularities observed a t  lower values of H ,  the spin 
rate generally increases with orifice-to-plate distance. The results shown in figure 12 
indicate in several instances a ' cross-over ' effect such that, for any two different values 
of ,uQ/yd4, the spin rate is higher for the larger ,uQ/yd4 a t  low values of H / d  and lower 
at  higher values of H l d .  However, the sensitivity of the spin rate to fluid flow rate a t  
fairly large values of H / d  does not appear to be very significant. 

Decreasing the viscosity generally tends to increase the region over which a linear 
relationship exists between w ( d / g ) i  and H / d  and de-emphasizes the initial peaks and 
valleys found a t  larger values of gd3/v2 .  It is suspected that low viscosities generally 
would cause a more nearly one-dimensional (axial) flow pattern, thus resulting in a 
pattern of behaviour that is more consistently uniform than those that would be 
observed in a flow that could be a t  times two-dimensional (axial and radial) and, thus, 
is forced to display either character depending upon the geometrical and flow condition 
to which it is subjected. 

The argument is further supported by the behaviour of the graphs when surface 
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tension effects are taken into account. The same effects described earlier (longer 
linear portions of the graphs) are observed as the effect of surface tension is reduced. 
Thus, i t  can be postulated that high viscous and surface tension effects generally 
would emphasize the two-dimensional aspects of the flow and would result in less 
uniform behaviour of the coiling parameters. 

The buckling behaviour for plane jets is generally similar to that of the axisym- 
metric jet and the same general comments hold for the plane jet as well. Additional 
data for both plane and nxisymmetric jets can be found in the work by Cruickshank 
(1  981)). 

Figure 13 is a composite of the buckling heights for data obtained from both the axi- 
symmetric and:j)lane jet experiments for one surface tension parameter, cr/yd: = 0.59. 
('learly, it indicates that the buckling height is not significantly affected by flow 
geometry. Different slit length to width ratios D / d ,  are involved. For the axisym- 
metric jet, ])/dl may be deemed to be equal to 1.0. The lack of sensitivity to this ratio 
is noted. 

In general, the plane jet buckles by folding and there is none of the mixed oscillations 
(c*oiling and folding) discussed above for the axisymmetric jet. If, however, the plane 
jet is allowed to become small enough in terms of its width and length (either because 
Il/dl is ne;irly cqual to one, or if the flow rate is small enough or the plane is far enough 
iL\\ray) the folding may stop and coiling may begin. 

Minimum flow rates were maintained to ensure that the folding behaviour was 
obtained throughout the range of our experiments. As with the axisymmetric jet, all 
oscillations stopped a t  some Reynolds number (based on orifice fluid velocity and 
orifice width). For. the experiments conducted, the critical Reynolds number averaged 
0.56. Above this value, the flow returned to the stable stagnation flow similar to that 
shown in figrire 3 ( ( I ) .  
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5 .  Conclusions 
A jet of a very viscous fluid flowing against a flat surface may become unstable and 

buckle in a fashion somewhat analogous to the buckling of a long slender solid column. 
There is a critical length-to-diameter ratio HJd at  which either a plane jet or an axi- 
symmetric jet will buckle. They are both stable to  external disturbances a t  plate-to- 
orifice distances less than this value. Surface tension appears to be the most significant 
parameter affecting this critical length, although there is some dependence on other 
flow and fluid variables. High values of surface tension tend to increase the critical 
height. For a given value of the surface tension parameter, the buckling height appears 
to be independent, of jet geometry. That is, HJd is essentially the same for plane jets 
of various aspect ratios as it is for axisyrnmetric jets. 

The frequency of the oscillations that result when the jet length is greater than the 
critical value generally increases with an increase in the orifice-to-plate distance. In  
some cases, however, there is an initial region in which the frequency decreases with 
this distance. 

The buckling instability described here is a low-Reynolds-number phenomenon. If 
the Reynolds number of the jet at the orifice is large enough (approximately 1.2 for 
the axisymmetric jet and 0.56 for the plane jet), the jet will not buckle for any length- 
to-diameter ratio. Perhaps in these cases inertia effects are large enough to overpower 
the viscous compressive normal stress effects, not allowing the jet to buckle. 

Thus there are two critical parameters associated with the buckling of a viscous jet 
as described here. First, the length-to-diameter ratio must be large enough in order 
for the jet to become unstable. Second, the Reynolds number must be small enough 
to  ensure that inertia effects are not important. This is in contrast to the more common 
situations in which instabilities occur when the Reynolds number becomes sufficiently 
large. 
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